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Literature

• Regression criticism II 
Hamilton Ch 4 p109-137 

Let us repeat some basics from last lecture:
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Analyses of models are based on 
assumptions

• OLS is a simple technique of analysis with 
very good theoretical properties. But

• The good properties are based on certain 
assumptions

• If the assumptions do not hold the good 
properties evaporates

• Investigating the degree to which the 
assumptions hold is the most important 
part of the analysis
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OLS-REGRESSION: assumptions

• I SPECIFICATION REQUIREMENT
• The model is correctly specified

• II GAUSS-MARKOV REQUIREMENTS
– (1) x is known, without stochastic variation
– (2) Errors have an expected value of 0 for all i
– (3) Errors have a constant variance for all i
– (4) Errors are uncorrelated with each other

(Ensures that the estimates are “BLUE”)
• III NORMALLY DISTRIBUTED ERROR TERM

• Ensures that the tests are valid
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Problems in regression analysis that 
cannot be tested

• If all relevant variables are included
• If x-variables have measurement errors
• If the expected value of the error is 0
• (This means that we are unable to 

check if the correlation between the 
error term and x-variables actually is 0 
and is actually the same as the first 
point that we are unable to test if the 
model is correctly specified)
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The most important problems in 
regression analysis that can be tested

• Non-linear relationships
• Non-constant error of the error 

term (heteroscedasticity)
• Autocorrelation for the error term
• Non-normal error terms
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Heteroscedasticity
• Is present if the variance of the error term varies with 

the size of x-values 
• Predicted y is an indicator of the size of x-values 

(hence scatter plot of residual against predicted y)
• Heteroscedasticity (non-constant variance of error 

term) can arise from 
– Measurement error (e.g. y more accurate the larger x is)
– Outliers
– The wrong functional form 

– If εi contain an important variable that varies with one or 
more x and y. The error term εi is not independent of the 
x-es. Hence the Gauss-Markov requirements 1 and 2 
cannot be correct.
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Indicators of heteroscedasticity

• Inspection of the scatter plot of residual 
against predicted value of y

• Band regression of the scatter plot

An interesting option here is:
• Locally weighted / ”sliding” regression on 

the central part of the sample
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”Sliding”
adapted 
line by 
means of 
locally 
weighted 
OLS 
regression

The 
procedure 
is called  
LOESS 
(see next 
slide) 
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A footnote: SPSS explains
Fit Lines
• In a fit line, the data points are fitted to a line that usually does not 

pass through all the data points. The fit line represents the trend of 
the data. Some fit lines are regression based. Others are based on 
iterative weighted least squares.

• Fit lines apply to scatter plots. You can create fit lines for all of the 
data values on a chart or for categories, depending on what you 
select when you create the fit line.

Loess 
• Draws a fit line using iterative weighted least squares. At least 13 

data points are needed. This method fits a specified percentage of 
the data points, with the default being 50%. In addition to changing 
the percentage, you can select a specific kernel function. The 
default kernel (probability function) works well for most data. 
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Autocorrelation
• Correlation among variable values on the same variable 

across different cases (e.g. between εi and εi -1 )
• Autocorrelation leads to larger variance and biased 

estimates of the standard error - similar to 
heteroscedasticity

• Autocorrelation is the result of a wrongly specified model
• Typically it is found in time series and geographically 

ordered cases. In a simple random sample from a 
population autocorrelation is improbable

• Tests (e.g. Durbin-Watson) is based on the sorting of the 
cases. Hence: hypotheses about autocorrelation need to 
specify the sorting order of the cases
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Non-normal residuals
• Imply that t- and F-tests cannot be used
• Since OLS estimates of parameters are easily 

affected by outliers, heavy tails in the distribution 
of the residual will indicate large variation in 
estimates from sample to sample

• We can test the assumption of normally 
distributed error term by inspecting the 
distribution of the residual, e.g. by inspecting
– Histogram, box plot, or quantile-normal plot
– There are also more formal tests (but not very useful) 

based on skewness and kurtosis 
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Unstandardized Residual
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Diagram of the residual shows: 

Heavy tails, many outliers, and weakly positively skewed 
distribution

BOX PLOT HISTOGRAM
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In the normal 
distribution the 
ratio between IQR 
and the standard 
deviation is 1.35 :

IQR/ SE = 1.35

IQR/1.35 = SE

Skewed distribution of the residual (1)
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Skewed distribution of the residual (2)

• Since the average of the residuals (ei) always equals 0, the 
distribution will be skewed if the median is unequal to 0 

• It is known that for the normal distribution the standard 
deviation (or the standard error) equals approximately 
IQR/1.35

• If the distribution of the residual is symmetric we can 
compare  SEe to IQR/1.35. If
– SEe > IQR/1.35 the tails are heavier than the normal distribution

– SEe ≈ IQR/1.35 the tails are approximately equal to the normal 
distribution

– SEe < IQR/1.35 the tails are lighter than the normal distribution
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Quantile-
Normal 
plot of 
residual 
from 
regression 
in table 
3.2 in 
Hamilton
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Options if non-normality is found

• Test out if the right function has been used
• Test out if some important variable has been 

excluded
– If the model cannot be improved substantially, we 

may try transforming the dependent variable to 
symmetry

• Test out if lack of normality is caused by outliers 
or influential cases
– If there are outliers, transforming of the variable 

where the case is outlier may help
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Influence (1)

• A case (or observation) has influence if the 
regression result changes when the case 
is excluded

• Some cases have unusually large 
influence because of 
– Unusually large y-value (outliers)
– Unusually large value on an x-variable 
– Unusual combinations of variable values
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Influence (2)

• We can see if a case has influence by 
comparing regressions with and without a 
particular case. One may for example

• Inspect the difference between bk and bk(i)
where case no i has been excluded in the 
estimation of the last coefficient

• This difference measured relative to the 
standard error of  bk(i) is called DFBETASik
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DFBETASik
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se(i) is the standard deviation of the residual when 
case no i has been exclude from the analysis 
RSSk is Residual Sum of Squares from the 
regression of xk on all other x-variables
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DFBETASik :

bk(i) bk

outlier

One case may make a lot of difference 
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What is a large DFBETAS?
• DFBETASik is calculated for every independent variable 

for every case. We do not want to inspect all values for it
• Three criteria for finding large values we need to inspect 

are
– External scaling. lDFBETASikl > 2/ SQRT(n)
– Internal scaling. Look for severe outliers in the box 

plot of DFBETASik : 
DFBETASik< Q1-3IQR 
Q3 + 3IQR < DFBETASik

– Gap in the distribution of DFBETASik
• None of the DFBETASik needs to be problematic
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DFBETA income Standardized DFBETA income
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Sequence
no

Case 
nr

water81water80 water
79

educat retire peop
81

cpeop

91 98 1500 1300 1500 16 0 2 0
92 99 3500 6500 5100 14 0 6 0
93 100 1000 1000 2700 12 1 1 0
94 101 3800 12700 4800 20 0 5 0
95 102 4100 4500 2600 20 0 5 0
96 103 4200 5600 5400 16 0 5 -1
97 104 2400 2700 800 16 0 6 0
98 105 1600 2300 2200 14 0 4 0
99 107 2300 2300 3100 16 0 4 -2

Sequence in the data set and case no is not the 
same. Case no is fixed. Variable values.
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Leverage plot for 
water use and 
income (see 
Hamilton p69-72 
on partial 
regression plots)

Look at the 
quantile-normal 
plot above
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Consequences of case with large influence

• If we discover cases with large influence we should 
not remove them from the analysis unless they 
contain serious errors

• Take a careful look at influential cases, maybe 
there are measurement errors

• When influential cases are outliers their influence 
can be reduced by transformation

• Use robust regression not so easily affected as 
OLS regression

• If no errors are found report results both with 
and without one or two of the most influential 
cases
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Potential influence: leverage

• The potential for influence of a case from a 
particular combination of x-values is measured 
by the hat statistic hi

• hi varies from 1/n to 1. It has an average of  K/n 
(K = # parameters)

• SPSS reports the centred hi
– i.e.   (hi – K/n), we may call this for hc

i

– We must compute the normal hi = hc
i + K/n to judge 

the size by the criteria supplied by Hamilton
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What is a large value of leverage?

• As for DFBETAS different criteria can be 
suggested. They all depend on the sample 
size n
– If hi > 2K/n (or  hc

i > K/n) we find the ca 5% 
largest hi ; alternatively

• If max (hi) ≤ 0.2 there is no problem
• If 0.2 ≤ max (hi) ≤ 0.5 there is some risk for a 

problem
• If 0.5 ≤ max (hi) probably there is a problem
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Centered Leverage Value
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The difference between influence and leverage

Figur 4.14 i Hamilton
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The leverage statistic is found in many other 
case statistics

– Variance of the i-th
residual

– Standardized residual 
(*ZRESID in SPSS)

– Studentized residual 
(*SRESID in SPSS)

– And remember that the 
standard deviation of 
the residual is

1
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i
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i
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Total influence: Cook’s Di

• Cook’s distance 
Di measure 
influence on the 
model as a 
whole, not on a 
specific  
coefficient as 
DFBETASik

( )
2

i

i

1
where z  is the standardized 
residual
and h  is the hat statistic 
(leverage)

i i
i

i

z hD
K h

=
−
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What is a large Di ?

• One might want to take a look at all
– Di > 1 or
– Di > 4/n these are about the 5% largest Di

• Even if a case has low Di it may still be the 
case that it affects the size of single 
coefficients (it has a large DFBETASik)
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Cook's Distance
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Also see table 4.4 
(p133) in Hamilton
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Summarizing 
What can be done with outliers and cases with 
large influence? We can
• Investigate if data are erroneous. If data are 

wrong the case can be removed from the 
analysis

• Investigate if transformation to symmetry helps
• Report two equations: with and without cases 

with unreasonably large influence
• Get more data 
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Multicollinearity
• Means very high intercorrelations among x-

variables
• Check if parameter estimates are correlated
• Check if tolerance (the part of the variation of x 

that is not shared with other variables) is less 
than say 0.1. If so there may be a problem

• VIF = variance inflation factor = 1/tolerance
• If multicollinearity is caused by squaring of 

variables or interaction terms it should not be 
seen as problematic
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Tolerance
• The amount of variation in a variable xk unique to 

that variable is called the tolerance of the variable
• Let R2

k be the coefficient of determination in the 
regression of xk on all the rest of the x-variables. 
The other x-variables explain the proportion R2

k of 
the variation in xk. 

• Then 1- R2
k is the unique variation: 

– Tolerance = 1- R2
k

• Perfect multicollinearity means that 
– R2

k = 1 and tolerance = 0
• Low values of tolerance make regression results 

less precise (larger standard errors)
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Variance Inflation Factor (VIF)

( )21k

e e e
b

k kk k

s s sSE VIF
RSS TSSR TSS

= = =
−

• 1/tolerance = 1/(1-R2
k) = VIF

• The standard error of the regression coefficient 
bk can be written

• Other things being equal lower tolerance 
(larger VIF) for xk will give higher standard 
error for bk [SE increase with a factor equal 
to square root of VIF]
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Indicators of multicollinearity
• The best indicator is tolerance or VIF (both 

are based on R2
k )

• Other indicators are
– Correlation among single variables (not reliable)
– Inclusion/ exclusion of single variables give large 

changes in the effect of other variables
– Unexpected signs on the effects of some variable
– Standardized regression coefficients larger than1 

or less than -1 
– Correlation among parameter estimates
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Dependent 
Variable: 
Summer 1981 
Water Use

Unstandardized
Coefficients t Sig. Collinearity Statistics

B Std. Error Tolerance VIF
(Constant) 242,220 206,864 1,171 ,242
Summer 1980 
Water Use ,492 ,026 18,671 ,000 ,675 1,482

Income in 
Thousands 20,967 3,464 6,053 ,000 ,712 1,404

Education in 
Years -41,866 13,220 -3,167 ,002 ,873 1,145

head of house 
retired? 189,184 95,021 1,991 ,047 ,776 1,289

# of People 
Resident, 1981 248,197 28,725 8,641 ,000 ,643 1,555

Increase in # of 
People 96,454 80,519 1,198 ,232 ,957 1,045

Tolerance and VIF from regression in table 3.2 in Hamilton

Spring 2010 © Erling Berge 2010 4242

What is low tolerance?

When R2
k > 0,9 

tolerance is < 0,1 
and VIF > 10

Factor of 
multiplication for 
the standard error 
is the square root 
of VIF (ca 3.2 for 
R2

k = 0,9)

Square root of VIF
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When is multicollinearity a problem?
• It is not a problem if the reason is curvilinearity or 

interaction terms in the model. But in testing we 
need to take account of the fact that if VIF is high 
parameter estimates are imprecise (high standard 
errors). They are tested as a group by the F-test

• If the reason is that two variables measure the 
same concept one of them should be dropped, or 
they can be combined in an index 

• It is a problem if we need estimates of the separate 
effects of two highly correlated variables (if a test of 
their joint effect is not sufficient)
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Summarizing (1)
• When errors are independent and identically 

normally distributed OLS estimates are as good 
or better than other possible estimates

• But the assumptions are rarely satisfied 
completely, we have to test the degree to which 
they are satisfied

• Many problems can be corrected if we learn about 
them

• Check early on if curvilinearity, outliers or 
heteroscedasticity are problems ( for example by 
use of scatter plots)
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Summarizing (2)
• Do more exact investigations using 

residual/predicted Y plots and leverage plots
– Curvilinearity (leverage plot, residual vs predicted Y 

plot)
– Heteroscedasticity (leverage plot, [absolute value of] 

residual against predicted Y plot)
– Non-normal residuals (quantile-normal plot, box-plot 

with analysis of median and IQR/1.35
– Influence (check DFBETAS and Cook’s D)
– When we do not find serious problems we can have 

more confidence in our conclusions


